If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-14x-62=0
a = 4; b = -14; c = -62;
Δ = b2-4ac
Δ = -142-4·4·(-62)
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{33}}{2*4}=\frac{14-6\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{33}}{2*4}=\frac{14+6\sqrt{33}}{8} $
| 4/12=x/21.5 | | 3x+4=12+9x | | 95=t+22 | | x/21.5=4/12 | | 4-2(3x+5)=-10 | | s+53=88 | | 6x+16=-4x-8 | | j-48=36 | | 3x-11+x+5=180 | | 20(x-5)=15x+8 | | 68=4f | | 5|x|+7=24 | | 6x-2.6=4x+8.5 | | 9×9×9×9×9×9×9×9×9×9=9u | | 4h-3=2h-1 | | 4x+6+52=180 | | 6n+10=2n+58 | | t+26=93 | | 20-5x=8x | | 1x+5=99 | | 5x-3(x-4=-8+5x+14 | | 1=c-20 | | 3(x+7)-5(x+12)=5 | | 20+16v=14v−20−2v | | z/10+42=38 | | 10x+23=5x+3 | | -41=-5s+-6 | | j-36=418 | | 7x+3=x-13 | | g/3+44=53 | | 28t=924 | | 20+5x=15+8x |